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a b s t r a c t

During the last years, notable efforts have been made to develop reliable and industrially applicable
machining monitoring systems based on different types of sensors, especially indirect methods that does
not required to interrupt the machining process. As the main objective in machining processes is to
produce a high-quality surface finish which, however, can be measured only at the end of the machining
cycle, a more preferable method would be to monitor the quality during the cycle. Motivated by this
premise, results of investigation on the relationship between audible sound emitted during process
and the resulted surface finish are reported in this paper. Through experiments with AISI 52100 hardened
steel, this work shows that such a correlation does exist between the surface roughness and the
Mel-Frequency Cepstral Coefficients (MFCCs) and based on that correlation, a new quality monitoring
method is proposed using Gaussian Mixture Models (GMM). Obtained results show that this method
can identify three different levels of surface roughness with an average accuracy of 98.125%.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Customers who need parts machined place a premium on the
quality of surface finish [1]. Thus to identify changes, failures, or
tears in the machining process, researchers have studied and
developed monitoring methods for many years, as can be seen in
the overview presented by Teti et al. [2]. Monitoring methods
can be classified as either direct or indirect, where direct methods
analyze measurements of tool wear or surface roughness but,
carrying out of such methods must either interrupt the machining
process or wait until its completion [3]. Indirect methods however,
can be carried out without stopping or interfering with the
machining process, thereby increasing efficiency and allowing
online adjustments [4]. To achieve this advantage it is necessary
to make use of other sources of information, such as, cutting forces
[5], vibration signals [6], acoustic emission [7], electric current,
image [8], and many other sources.

Among all source of information used indirect methods, the
sound generated during machining process has recently attracted
researchers attention [9–11]. Mainly because using the produced
sound to gauge information about machining process has two
major advantages: ease of installation [9] and implementation at
a lower cost than other sensors [12].

Some examples of investigations into the use of sound
emissions to determine the status of processes and structures
include, but are not limited to, Lu and Wan [13] that analyzed
the high-frequency sound signals (range between 20 and 80 kHz)
generated in micro-milling process and proposed a tool wear
monitoring method. Results indicated that the normalized sound
signals can be potentially applied in monitoring methods with
the proper selection of feature bandwidth and other parameters.

Also, airborne sound was found by Robben et al. [14] to be a
valuable source of information in an ongoing machining process
for the cut-off grinding of concrete. The authors highlighted that
because of the very high sound emission of the machining process
in a controlled environment, there was no total influence of
environmental noise on the proposed monitoring method.
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In the case of audible sound emissions in the frequency range
spectrum of human hearing (between 0 and 20 kHz), Downey
et al. [15] observed that it was possible to correlate the sound
energy with tool wear in machining operations. Furthermore,
audible acoustic spectra highlighted the possibility of identifying
discrete phases in the cutting interface performance. This work
was based in the premise that some experienced machinists are
indeed capable of discerning between a good and a degraded
machining process through variations in the audible sound
emissions from the process.

Following this idea, the fundamental aim of this work is to
determine if, besides detecting tool wear, it is possible to identify
differences in audible acoustic emissions for different finishing
surface roughness levels enabling its utilization in quality monitor-
ing of machining process. One feature that can successfully model
human auditory system is the Mel-Frequency Cepstral Coefficients
(MFCC) [16], extensively used for speech recognition [17,18]. This
feature has not been explored for monitoring machining process,
what makes it the major contribution of this work.

Other important point to highlight is that most of presented
work have focus on monitoring tool wear and analysis of data that
is offered by the machining process from the sensor configurations.
As the objective of a machining process is the final quality of the
work-piece, actually many efforts are directed to find efficient
ways to monitor the quality of the machining process, where
surface roughness raised as an important parameter for quality
monitoring [19,20]. Using the MFCC extracted from sound energy
as acoustic spectrum features, a new surface roughness diagnosis
approach based on Gaussian Mixture Models (GMM) is proposed.

The rest of the paper is organized as follows. Section 2 provides
a detailed explanation of the methodology. In Section 3, the
experiment is outlined showing all the steps for database creation.
In Section 4, the obtained results are presented. Finally,
conclusions and future work are given in Section 5.
2. The methodology

Fig. 1 presents an overview of the presented methodology. First,
a windowing approach is used over the sound signal providing a
frame-by-frame basis. Second, mel-frequency cepstral coefficients
are extracted from the windowed sound signal. Next, extracted
Fig. 1. Overview of the methodology.
coefficients can be used for training and estimate GMM models
or, if all models are already estimated, used for surface roughness
diagnosis. The methodology will be presented in 4 sections.
Section 2.1 discusses how sound signal is divided in frames and
the power spectral density is obtained for each frame. Section 2.2
shows the feature extraction technique used to calculate the
mel-frequency cepstral coefficients. This is an important step since
it is used in both system training and surface roughness diagnosis,
as detailed in the next sections. Then, in Section 2.3 is presented a
brief review on Gaussian Mixture Models and also the models
estimation procedure is detailed. Finally, Section 2.4 presents the
diagnosis procedure.

2.1. Signal processing and windowing in sound signals

The sound that comes from the machining process is a dynamic
signal. It varies with time due to small differences in the machined
material, vibration, fluctuations in rotating speed, and so forth.
Therefore, it is reasonable to update the acoustic information on
a frame-by-frame basis where a frame consists of F samples of
the signal corresponding to a period of tF seconds. This corresponds
to the length of time (in seconds) over which a set of parameters is
valid. Then the analysis moves tW samples forward for a new
frame, where W 6 F, resulting in superposition between adjacent
frames. The amount of overlap to some extent controls how
quickly parameters can change from frame to frame, which
normally corresponds to an overlap of 50% [16].

Each frame is multiplied by a windowing function in order to
smooth quick variations and increase continuity between frames
[18,21]. For this work, it was used a Hamming function that can
be calculated by

wðnÞ ¼ 0:54� 0:46 cosð2pn=ðF � 1ÞÞ;0 6 n 6 F � 1

where F represents the frame size. The windowed frame can be
expressed as

~xkðnÞ ¼ xðnÞwðnÞ;0 6 n 6 F � 1

where F is the frame size. The total number of frames depends on
the selected frame interval F and time shift W besides the total
signal length.

Finally, for each k windowed frame is calculated the spectral

energy Sk ¼ jXkj2, where Xk is the Discrete Fourier Transform
(DFT) of the windowed frame ~xk, calculated through the FFT
algorithm by

Xk ¼
XN�1

n¼0

~xkðnÞe2pkn=N:

Sk is composed by N=2þ 1 values of energy where N corresponds to
the number of FFT points.

2.2. Mel-frequency cepstral coefficients extraction

Depending on the number of FFT points N, a correlation analysis
of all N=2þ 1 energy values with each machining parameter and
also finishing surface roughness may not be satisfactory since
many components tend to be correlated. Also, for successful classi-
fication, features extracted from signal must eliminate as much
irrelevant information as possible and retain only the significant
information. Thus the feature vectors should attend the following
requirements: first, be of low dimensionality to allow a reliable
estimation of the free parameters of the recognition system;
second, be independent of the recording environment, and finally
be characteristic for each machining setup, to allow an optimal
discrimination between the different acoustic models.
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One such parameter that has achieved a great success in this
task is the Mel-Frequency Cepstral Coefficients (MFCC), first
proposed for the speech recognition problems [22]. Based on filter
bank, can be regarded as a crude model of the initial stages of
transduction in the human auditory system [16]. The main
motivations for this kind of representation are: first, the position
of maximum displacement along the basilar membrane for stimuli,
such as pure tones, is proportional to the logarithm of the
frequency of the tone; second, experiments in human perception
have shown that frequencies of a complex sound within a certain
bandwidth of some nominal frequency cannot be individually
identified. When one of the components of this sound falls outside
this bandwidth, it can be individually distinguished. We refer to
this bandwidth as the critical bandwidth, which is nominally
10–20% of the center frequency of the sound [16].

The main idea behindMel-scale is therefore a mapping between
the real frequency scale (Hz) and the perceived frequency scale
(Mels). Frequencies between 0 Hz and 1 kHz are linearly approxi-
mated and then a logarithmic scale is used for frequencies beyond
1 kHz. It is possible to define a mapping from the actual frequency f
to a perceptual frequency scale by

f mel ¼ 2595 log10 1þ f
700

� �
: ð1Þ

The process of extracting the MFCC can be outlined as follow.
The first step is to separate the signal into K frames of size F, and
calculate the energy spectrum Sk for each frame k ¼ 1; . . . ;K [18].
This first step was detailed in Section 2.1. Next, each energy frame
is filtered using a triangular filter bank, which center frequencies
can be calculated by (1), resulting

eskðlÞ ¼ XN=2
n¼0

SkðnÞMlðnÞ

where N is the number of FFT points, L is the number of Mel-scale
filters and Ml is the lth-filter [8,23]. Finally, a Discrete Cosine Trans-
form (DCT) is applied to the natural logarithm of the Mel spectrum,
resulting in the Mel-frequency Cepstral Coefficients, as follows

ckðmÞ ¼
XL�1

l¼0

logðeskðlÞÞ cos pm
2L

ð2lþ 1Þ
� �

; 8k ¼ 1; . . . ;K ð2Þ

where m ¼ 1;2; . . . ;C and C is the number of desired coefficients.
Since most of the signal information is represented by the first
coefficients, normally C is chosen between 12 and 20 [24,21].

2.3. Estimation of surface roughness models

Gaussian mixture model (GMM) was adopted in order to
perform surface roughness diagnosis, as it provides a probabilistic
model of the underlying sound. The use of GMM is present in many
applications where features extracted from audible sound are used
for some kind of classification [25,17]. According to [26], for a D

dimensional feature vector x
!
, a Gaussian mixture density is given

by

pðx! jkÞ ¼
XM
i

wibiðx
!Þ ð3Þ

The density pðx! jkÞ is a weighted linear combination of

i ¼ 1; . . . ;M component densities biðx
!Þ, each parameterized by a

D� 1 mean vector, l
!

i, a D� D co-variance matrix, Ri, and
D-mixture weights wi that satisfy the constraint that

PM
i¼1wi ¼ 1

[23,24]. Each component density biðx
!Þ is a D-variate Gaussian

function of the form
biðx
!Þ ¼ 1

ð2pÞD=2jRij1=2
exp �1

2
ðx!�l!iÞ

0
R�1

i ðx!�l!iÞ
� �

In summary, the complete Gaussian mixture density k can be

parameterized by k ¼ ðwi;l
!

i;RiÞ. The number of mixture
components is empirically chosen for a given data set.

In order to generate reliable and accurate results, the
GMM-based pattern recognition technique, as with other
techniques (neural network, HMM, etc.), needs a training
procedure prior to diagnosis.

After extracting features from signals (see details in Sections 2.1
and 2.2), it is necessary to find the best cluster separation that can
accurately represent the different desired classes. Once defining

such clusters, models parameters ðwi;l
!

i;RiÞ can be estimated using
the expectation–maximization (EM) algorithm [27]. For a sequence

of T training vectors X ¼ ðx!1; x
!

2; . . . ; x
!
TÞ, the GMM likelihood can be

calculated as pðXjkÞ ¼ QT
t¼1pðx

!
t jkÞ. So, the parameters are adjusted

on each iteration, increasing the likelihood of the estimated model,
that is, for iterations k and kþ 1; pðXjkkþ1Þ > pðXjkkÞ. On each
iteration, the mixture weights, means, and variances are
re-estimated using the respective formulas

�wi ¼ 1
T

XT
t¼1

pðijx!t; kÞ

�li ¼
PT

t¼1pðijx
!

t; kÞx
!
tPT

t¼1pðijx
!
t ; kÞ

�r2
i ¼

PT
t¼1pðijx

!
t; kÞx

!
tPT

t¼1pðijx
!
t ; kÞ

� �l2
i

The a posteriori probability for a class i can be calculated as

pðijx!t ; kÞ ¼ wibiðx
!
tÞPM

k¼1wkbkðx
!
tÞ
:

2.4. Surface roughness diagnosis

Supposing that a group of S surface roughness clusters obtained
in the training procedure are represented by the GMM models
k1; k2; . . . ; kS . Surface roughness diagnosis in the process of finding
the model k with the maximum likelihood representation,
calculating

bS ¼ arg max
16k6S

pðXjkkÞ

where X ¼ ðx!1; x
!

2; . . . ; x
!
TÞ is the feature vector sequence under

analysis. Assuming that the feature vectors of X are independent,
the log- likelihood of a model k can be computed by

bS ¼ arg max
16k6S

XT
t¼1

logpðx!t jkkÞ

where pðx!tjkkÞ is calculated by (3).

3. Experimental outline

3.1. Experimental setup

The experimental setup is based on a CNC lathe with a
maximum rotational speed of 4000 rpm and power of 5.5 kW
and using Wiper mixed ceramic (Al2O3 + TiC) inserts (ISO code
CNGA 120408S01525WH) coated with a very thin layer of titanium



Fig. 2. Machining setup.

Fig. 3. Full audio recorded during machining (CS ¼ 200; F ¼ 0:10 and D ¼ 0:10Þ.
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nitride (TiN; Sandvik-Coromant GC 6050). The work-pieces were
made of AISI 52100 steel with dimensions of 49 mm 50 mm and
a hardness between 49 and 52 HRC, up to a depth of 3 mm below
the surface. Details related to the experimental setup such as the
location of microphone in relation to cutting interface and the tool
holding configuration can be seen in Fig. 2.

Sound emissions were collected using an audio microphone
connected to the sound card of a Dell Vostro laptop, recorded
through the software Audacity [28] using a sample frequency of
44.1 kHz and 16 bits resolution. Respective surface roughness
was measured using a Mitutoyo portable roughness meter model
Surftest SJ 201, fixed to a cut-off length of 0.25 mm.

3.2. Experimental methodology

In order to determine the machining setup parameters, a
Central Composite Design (CCD) was used to create a sequential
set of experimental runs [29]. The number of tools available for
the experiment led us to choose 10 sets of machining setups which
were selected based on D-optimality criteria [30]. Table 1 shows
the resulted parameter values for each experimental run
considering cutting speed (CS m=min), feed rate (F mm=rev), depth
of cut (D mm) and material removal rate (MRR).

Each experimental run was replicated 15 times to guarantee the
statistical reliability of the experiment, resulting a total of 150
experimental runs. During the experiment, it was guaranteed that
there were no other machining operations taking place in the
vicinity, which might have added interfering acoustic components
and compromise the signals being detected. For each execution,
sound signal was recorded and the following surface roughness
Table 1
Surface roughness average for all machining setups.

Machining setup Parameters

CS F D MRR

Ms1 200.00 0.10 0.10 2.00
Ms2 240.00 0.10 0.10 2.40
Ms3 200.00 0.20 0.10 4.00
Ms4 200.00 0.10 0.20 4.00
Ms5 240.00 0.10 0.20 4.80
Ms6 240.00 0.20 0.20 9.60
Ms7 186.36 0.15 0.15 4.19
Ms8 220.00 0.23 0.15 7.72
Ms9 220.00 0.15 0.23 7.72
Ms10 220.00 0.15 0.15 4.95
parameters were measured: arithmetic average surface roughness
(Ra), maximum surface roughness (Ry), root mean square
roughness (Rq), 10-point height (Rz), and maximum peak to valley
(Rt), measured three times at four positions in the work-piece
middle, as proposed by Paiva et al. [29]. Finally, mean and variance
were calculated for each surface roughness obtained resulting the
values presented in Table 1. For each experimental cycle, the only
change was the replacement of the cutting tool insert in order to
guarantee the same tool wear condition.

3.3. Feature extraction

As outlined, measurements of the surface finish of the
work-piece were taken regularly during the experimental runs.
Samples in the range of 7–10 s duration were taken from each
recorded audio data, for all experimental runs. The sample time
range was chosen considering just the stable cutting period avoid-
ing moments when cutting tool enters and exits of the work-piece
[15], as illustrated by Fig. 3. Feature vectors were extracted,
according to Section 2.2, using N ¼ 1024 FFT points, a frame length
tF ¼ 20 ms and frame shift tW ¼ 10 ms, that are common values
used in speech analysis [23] and also applied in machining
monitoring methods [11]. On average, a total of K ¼ 900 frames
was obtained from each data file, each one composed by C ¼ 12
Mel-frequency Cepstral Coefficients, calculated using L ¼ 31 filters.

4. Results

4.1. Correlation analysis

Fig. 4 represents the spectrogramof two differentmachining set-
ups (Ms1 and Ms7), where it is possible to note that power spectral
density has a stochastic behavior along time. As the MFCC feature
Surface roughness

Ra Ry Rz Rq Rt Rsm

0.15 1.05 0.75 0.18 1.44 85.60
0.16 1.17 0.81 0.20 1.56 91.30
0.44 2.39 1.76 0.53 3.09 169.72
0.19 1.36 1.00 0.24 1.80 58.91
0.18 1.32 0.89 0.23 1.89 100.67
0.52 2.90 2.24 0.63 3.41 195.46
0.26 1.87 1.25 0.33 2.71 104.31
0.50 2.62 2.06 0.60 3.10 212.34
0.26 1.90 1.29 0.33 2.70 73.04
0.19 1.42 0.97 0.24 2.10 88.14



(a) Machining setup 1 (Ms1).

(b) Machining setup 7 (Ms7).

Fig. 4. Resulted spectrogram for different machining setups.

Table 2
Correlation analysis between mel-frequency cepstral coefficients, machining setup parameter and surface roughness.

MFCC CS F D MRR Ra Ry Rz Rq Rt Rsm

c1 0.061a 0.594A 0.563 0.781 0.595 0.665 0.629 0.607 0.685 0.419
c2 �0.069 �0.703 �0.506 �0.802 �0.649 �0.722 �0.671 �0.662 �0.752 �0.507
c3 0.123 0.430 0.210 0.414 0.228 0.265 0.220 0.235 0.318 0.285
c4 0.440 �0.240 0.334 0.204 �0.040 �0.053 �0.003 �0.048 �0.158 �0.097
c5 0.673 0.029 0.437 0.432 0.003 0.037 0.037 0.006 0.018 0.021
c6 0.566 0.001 �0.098 0.058 �0.052 �0.126 �0.066 �0.063 �0.216 0.093
c7 �0.069 0.029 0.077 0.106 �0.081 �0.058 �0.039 �0.072 �0.037 �0.135
c8 �0.607 0.207 �0.228 �0.173 0.063 0.076 0.051 0.068 0.165 �0.031
c9 �0.562 �0.021 �0.361 �0.296 �0.032 �0.066 �0.069 �0.036 �0.043 0.010
c10 0.013 0.239 �0.032 0.110 0.291 0.237 0.237 0.280 0.206 0.346
c11 0.616 �0.037 0.271 0.324 0.062 0.062 0.065 0.059 0.014 0.159
c12 0.614 0.052 0.334 0.363 �0.020 0.025 0.012 �0.013 0.024 0.006

A Bold values represent correlations that are statistically significant (P-Value < 5%).
a Pearson correlation.
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vector describes the power spectral envelope of a single frame, this
stochastic behavior means that there is no information in the
trajectories of theMFCC coefficients over time (dynamics), and time
based features as delta or delta-delta are not applicable. Based on
that information, the MFCC of all K frames can be substituted by
one vector containing their average, i.e., the MFCC of each machin-
ing setup can be represented by cm ¼ 1=K

PK
k¼1ckðmÞ;8m ¼ 1;2; . . .C

and ckðmÞ obtained by (2) for each frame k.
Through correlation analysis was possible to identify which
Mel-Frequency Cepstral Coefficients were strongly correlated with
machining parameters and surface roughness (see Table 2). Each
Mel coefficient presented higher correlation with different machin-
ing parameter, i.e., coefficient c2 is correlated with material remove
rate (MRR) and also with all finishing surface roughness parameter
(Ra, Ry, Rz, Rq, Rt and Rsm), where maximum peak to valley surface
roughness (Rt) presented highest correlation. Already c5 coefficient



Table 3
Regression coefficients and coefficients of determination.

Ra Ry Rz Rq Rt c2

Constant 0.185A 1.387 0.958 0.236 2.133 �32.234
CS 0.074 0.202 0.24 0.079 0.074 2.765
F 0.169 0.746 0.616 0.194 0.773 �9.278
D �0.053 �0.035 �0.111 �0.051 0.075 �10.073

CS2 0.075 0.33 0.267 0.084 0.201 0.091

F2 0.014 0.002 0.044 0.015 �0.123 0.78

D2 0.057 0.198 0.172 0.062 0.162 3.079

CS� F 0.077 0.197 0.266 0.081 0.043 5.743
CS� D �0.01 �0.051 �0.052 �0.011 �0.009 0.743
F � D �0.063 �0.081 �0.159 �0.063 0.046 �5.759
S 0.013 0.135 0.085 0.018 0.262 1.283
R-Sq(adj) 99.27% 95.79% 97.62% 98.80% 86.13% 98.70%
Normality test 0.433a 0.268 0.117 0.118 0.328 0.382
For residuals 0.273b 0.646 0.988 0.988 0.492 0.365

A Bold values represent the significant terms in the models (P-Value < 5%).
a Anderson–Darling statistic test.
b P-Value.

Table 4
Gaussian mixture model for surface roughness cluster S1.

Density w lc1 lc2 rc1 rc2

1 0.12 �18.42 �17 24.56 27.1
2 0.12 �8.45 �8.81 36.79 17.75
3 0.13 �9.44 0.43 5.71 5.2
4 0.11 �6.92 �5.04 19.67 6.2
5 0.21 �6.04 4.42 5.08 5.56
6 0.14 �1.52 8.8 8.73 6.93
7 0.13 2.24 �4.22 19.27 7.5
8 0.04 11.11 �1.28 6.67 5.43

Table 5
Gaussian mixture model for surface roughness cluster S2.

Density w lc1 lc2 rc1 rc2

1 0.05 �0.85 �31.66 25.84 43.28
2 0.06 6.6 �36.51 29.29 14.68
3 0.12 �2.28 �8.48 12.27 14.09
4 0.06 �0.87 �26.41 33.89 15.11
5 0.13 �10.75 �1.44 7.32 17.53
6 0.17 3.81 �2.14 11.12 9.21
7 0.26 �6.73 4.45 7.42 13.8
8 0.14 �1.49 7.99 13.17 10.26
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presented stronger correlation with cutting speed (CS) machining
parameter. Fig. 5 illustrates how second coefficient (c2) is strongly
negative correlated with surface roughness measures. When
surface roughness level increases, c2 has the same behavior but
in the opposite way, which explains the negative correlation.

With the aim of highlight such a correlation, response surface
analysis was applied in two replicas randomly selected resulting
the regression coefficients, R-Sq (adj.) and Anderson–Darling
normality test for residuals of each response, presented in Table 3.
Results have presented not only adequate coefficients of
determination (above 95%, exception for Rt ¼ 86:13%), but also
enough evidence to affirm that residuals are following normal
distributions. As can be observed in Table 3, feed rate F was the
most important factor explaining the average behavior of surface
roughness parameters and was also one of the most import factors
explaining c2. According to Tekner and Yes�lyurt [31], surface
roughness is strongly correlated with feed rate (F) so this similarity
might be one of the reasons why strong correlations between
surface roughness parameters and MFCC were observed.

The presented analysis showed that the cutting specific energy
(related to the MRR) applied to the system is probably transformed
in other types of energy like vibration, heat (tool edge, work-piece,
chip and air), sound and others. In this case, the part of the energy
transferred to the audible sound can be identified by MFCC,
proving that this feature can be applied in monitoring methods.

4.2. Cluster criteria definition

To recognize the patterns of the acoustic signals and correlate
them with the surface roughness measured, it is necessary to
evaluate in how many distinct clusters the measured surface
roughness can be separated. Using the statistical technique of
cluster hierarchical analysis based on the Ward method [32], the
machining setups were separated into three different
clusters: S1 ¼ fMs1;Ms2g; S2 ¼ fMs3;Ms4;Ms5;Ms7;Ms10g and
S3 ¼ fMs6;Ms8;Ms9g. The similarity among the machining setups
was evaluated regarding the behavior of the average surface
roughness Ra and the material removal rate MRR. As can be
observed, some machining setups resulted a surface roughness Ra
not sufficiently different to support the hypothesis that it is possible
to separate the 10 machining setups. In this way, some different
machining setups can result similar surface roughness levels.

4.3. Surface roughness diagnosis

Based on the obtained clusters, two training and testing sets
were separated using the 150 total sound data files. A second
Fig. 5. Line plots for standardized surface roughness parameters and Mel-frequency
cepstral coefficient (�c2).

Table 6
Gaussian mixture model for surface roughness cluster S3.

Density w lc1 lc2 rc1 rc2

1 0.01 3.13 �35.85 17.85 14.03
2 0.04 17.39 �38.88 18.77 10.02
3 0.06 15.61 �45.36 46.75 18.78
4 0.05 27.25 �45.45 39.84 15.5
5 0.1 �0.19 �9.03 8.48 10.13
6 0.13 4.09 �3.99 6.11 7.09
7 0.01 �17.38 �10.67 83.47 17.05
8 0.61 �3.69 3.87 22.1 16.3
training and testing set was used as a confirmation experiment
to ensure the statistical accuracy of the proposed system. For each
machining setup, eight of the 15 sound data files were separated
for training and seven for testing. According to the number of
machining setups in the cluster, the number of training and testing
data files can vary from 16 to 40 and from 14 to 35, respectively,
considering that each machining setup has 15 different replicas.



Table 7
Surface roughness diagnosis accuracy.

Cluster No. Cutting speed, feed rate, depth of cut Testing set No. of replicas Replicas Accuracy (%)

2 186 m/min, 0.15 mm/rev, 0.15 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
3 220 m/min, 0.23 mm/rev, 0.15 mm 1 7 2, 4, 6, 8, 10, 12, 14 85.7
3 220 m/min, 0.15 mm/rev, 0.23 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
1 240 m/min, 0.10 mm/rev, 0.10 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
2 240 m/min, 0.10 mm/rev, 0.20 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
2 220 m/min, 0.15 mm/rev, 0.15 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
3 240 m/min, 0.20 mm/rev, 0.20 mm 1 7 2, 4, 6, 8, 10, 12, 14 85.7
1 200 m/min, 0.10 mm/rev, 0.10 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
2 200 m/min, 0.20 mm/rev, 0.10 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
2 200 m/min, 0.10 mm/rev, 0.20 mm 1 7 2, 4, 6, 8, 10, 12, 14 100
2 186 m/min, 0.15 mm/rev, 0.15 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
3 220 m/min, 0.23 mm/rev, 0.15 mm 2 7 3, 4, 7, 8, 11, 12, 15 85.7
3 220 m/min, 0.15 mm/rev, 0.23 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
1 240 m/min, 0.10 mm/rev, 0.10 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
2 240 m/min, 0.10 mm/rev, 0.20 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
2 220 m/min, 0.15 mm/rev, 0.15 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
3 240 m/min, 0.20 mm/rev, 0.20 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
1 200 m/min, 0.10 mm/rev, 0.10 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
2 200 m/min, 0.20 mm/rev, 0.10 mm 2 7 3, 4, 7, 8, 11, 12, 15 100
2 200 m/min, 0.10 mm/rev, 0.20 mm 2 7 3, 4, 7, 8, 11, 12, 15 100

Average 98.125
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GMM model estimation algorithm was implemented in C
programming language according to the method described in
Section 2.3. Each surface roughness model, identified as S1; S2; S3,
was estimated using M ¼ 8 component densities. Observations
sequence used during model estimation were composed only by
the fist and second Mel-frequency cepstral coefficients, as they
presented the highest correlation with surface roughness parame-
ters (see Section 4.1). The resulted GMM models for each surface
roughness cluster can be seen on Tables 4–6.

Surface roughness diagnosis procedure was also developed
using C programming language according to the method described
in Section 2.4. Observations sequence, composed by the first and
second mel-frequency cepstral coefficients, were used to find the
model with the maximum likelihood. The testing set was used to
access the accuracy of the proposed system calculating the number
of sound signals correctly classified divided by the total number of
sound signals tested. The proposed method achieved an average
accuracy rate of 98.125%, as presented in Table 7. As the testing
set for each surface roughness cluster is composed by different
machining setups, this percentage indicates that the method is
very robust and is not sensitive to cutting speed, feed rate, or
depth-of-cut parameters.
5. Conclusions

Machining parameters were varied based on a Central
Composite Design (CCD) in order to characterize the audible sound
energy signals emitted by different cutting conditions during
turning of AISI-5210 hardened steel. The corresponding acoustic
signals were detected and processed in the frequency domain by
extracting the Mel-Frequency Cespstral Coefficients.

The linear relationship between MFCC levels and machining
parameters were evaluated through Pearson correlation analysis
where it was possible to detect strong correlations such as c1 and
c2 with material removal rate (MRR) and all surface roughness,
and also c5 with cutting speed (CS). To better understand such
relationship, graphical analysis was used to demonstrate the linear
relationship since changes in the machining parameters resulted in
proportional changes in the MFCC levels.

Also, a response surface analysis was applied in the surface
roughness parameters and MFCC. Feed rate (F) was the most
important factor explaining the average behavior of surface
roughness parameters and was also one of the most important
factors explaining second Mel coefficient (c2), which highlights
the strong correlations between surface roughness parameters
and MFCC. Finally, using the MFCC as sound feature, this paper
proposed a quality monitoring method based on Gaussian Mixture
Models. Presented results validated the method and the effective-
ness was evidenced by a diagnosis accuracy of 98.125%.

For future study, the proposed method could be analyzed using
other machining processes like milling, drilling, welding and
others. Also for future work, the MFCC applied with ANN or even
SVM could be tested.
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